двухмерная задача распределения напряжений - Übersetzung nach französisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

двухмерная задача распределения напряжений - Übersetzung nach französisch

Гиббса распределения; Каноническое распределение; Распределения Гиббса

двухмерная задача распределения напряжений      
problème bidimensionnel de la distribution des contraintes
эпюра         
( графическое изображение закона изменения функции в зависимости от изменения аргумента )
diagramme; épure
задача         
ПРОБЛЕМНАЯ СИТУАЦИЯ С ЯВНО ЗАДАННОЙ ЦЕЛЬЮ, КОТОРУЮ НЕОБХОДИМО ДОСТИЧЬ
Задачи; Математические задачи
mission, tâche

Definition

Коммивояжёра задача

задача о бродячем торговце, одна из известных задач конечной математики (См. Конечная математика); в простейшем случае формулируется следующим образом: даны n городов и известны расстояния между каждыми двумя городами; коммивояжёр, выходящий из какого-нибудь города, должен посетить n - 1 других городов и вернуться в исходный. В каком порядке ему нужно посещать города (по одному разу каждый), чтобы общее пройденное расстояние было минимальным. К такого типа задачам, связанным с объездом ряда пунктов и возвращением в исходную точку, относятся: задачи доставки продуктов питания в магазины, подвода электроэнергии к потребителям, построения кольцевой линии электропередач, различные задачи, возникающие при автоматизации монтажа схем, и т.д. Такова, например, задача отыскания оптимальной программы работы автоматического фрезерного станка для просверливания отверстий в заданных точках панели радиоприёмника, то есть нахождения такого порядка прохождения этих точек, при котором длина маршрута головки сверла была бы минимальной. Здесь начало маршрута не обязательно должно совпадать с его концом, но математически такая постановка сводится к приведенной выше простейшей К. з. Методы решения К. з., по существу, сводятся к организации полного перебора вариантов; никакого эффективного алгоритма не известно.

Лит.: Мудров В. И., Задача о коммивояжёре, М., 1969; Гольштеин Е. Г., Юдин Д. Б., Новые направления в линейном программировании, М., 1966.

В. П. Козырев.

Wikipedia

Распределение Гиббса

Распределение (каноническое) Гиббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом (окружающей средой). В классическом случае плотность распределения равна

w ( X , a ) = 1 Z e β H ( X , a ) , {\displaystyle w(X,a)={\frac {1}{Z}}e^{-\beta H(X,a)},}

где X {\displaystyle X}  — совокупность 6 N {\displaystyle 6N} канонических переменных N {\displaystyle N} частиц ( 3 N {\displaystyle 3N} координат и 3 N {\displaystyle 3N} импульсов), a {\displaystyle a}  — совокупность внешних параметров, H ( X , a ) {\displaystyle H(X,a)}  — гамильтониан системы, β {\displaystyle \beta }  — параметр распределения. Величину Θ = 1 β {\displaystyle \Theta ={\frac {1}{\beta }}} называют модулем распределения. Можно показать, что модуль распределения Θ = k T {\displaystyle \Theta =kT} , где T {\displaystyle T}  — абсолютная температура, k {\displaystyle k}  — постоянная Больцмана. Z {\displaystyle Z}  — параметр, определяемый исходя из условия нормировки ( X ) w ( X , a ) d X = 1 {\displaystyle \int _{(X)}w(X,a)dX=1} , откуда следует, что

Z = ( X ) e β H ( X , a ) d X . {\displaystyle Z=\int _{(X)}e^{-\beta H(X,a)}dX.}

Z {\displaystyle Z} называют интегралом состояний.

Часто используют следующую параметризацию распределения Гиббса:

w ( X , a ) = e Ψ ( Θ , a ) H ( X , a ) Θ , {\displaystyle w(X,a)=e^{\frac {\Psi (\Theta ,a)-H(X,a)}{\Theta }},}

где Ψ ( Θ , a ) = Θ ln Z ( Θ , a ) {\displaystyle \Psi (\Theta ,a)=-\Theta \ln Z(\Theta ,a)}  — так называемая свободная энергия системы.

В квантовом случае предполагается счётное множество энергетических уровней, и вместо плотности распределения рассматривается вероятность нахождения системы в том или ином состоянии:

W i = e Ψ E i Θ . {\displaystyle W_{i}=e^{\frac {\Psi -E_{i}}{\Theta }}.}

Условие нормировки имеет вид i = 0 W i = 1 {\displaystyle \sum _{i=0}^{\infty }W_{i}=1} , следовательно

Z = i = 0 e E i Θ , {\displaystyle Z=\sum _{i=0}^{\infty }e^{-{\frac {E_{i}}{\Theta }}},}

что является аналогом интеграла состояний и называется суммой состояний или статистической суммой.

Распределение Гиббса представляет наиболее общую и удобную основу для построения равновесной статистической механики. Знание распределения частиц системы позволяет найти средние значения различных характеристик термодинамической системы по формуле математического ожидания. С учётом большого количества частиц в макроскопических системах, эти математические ожидания в силу закона больших чисел совпадают с реально наблюдаемыми значениями термодинамических параметров.